At the end of this lecture you will have:

- ✓ An understanding of what are composite materials
- ✓ What the various types of composite materials
- ✓ Why they are used
- ✓ How they are designed

✓ What are composites materials?

✓ What are composites materials?

Many materials are composites made up of at least two constituents









✓ What are the various types of composites materials?

✓ What are the various types of composites materials?

Typically made of a matrix and 1 or more reinforcements

They have different compositions, shapes and physical/chemical properties



Fig. 1.1 Schematic depiction of representative polymer, metal and ceramic matrix composites.

✓ What are the various types of composites materials?



✓ What are the various types of composites materials?



The arrangement of the reinforcement (distribution, size, shape, and  $\rho_1/17/2$  prientation matters)

✓ What are the various types of composites materials?

The type, distribution, size, shape, orientation, and arrangement of the reinforcement will determine the properties of the

composites material and its anisotropy





✓ What are the various types of composites materials?

#### Classification of composites:

Matrices:

```
Organic Matrix Composites (OMCs)
Polymer Matrix Composites (PMCs)
carbon-carbon composites
Metal Matrix Composites (MMCs)
Ceramic Matrix Composites (CMCs)
```

Reinforcements:

Fibres reinforced composites Laminar composites Particulate composites

✓ Why are composites materials used?

√ Why are composites materials used?

#### Advantages

- Lower density (20 to 40%)
- Higher directional mechanical properties (specific tensile strength (ratio of material strength to density) 4 times greater than that of steel and aluminium.
- Higher Fatigue endurance .
- Higher toughness than ceramics and glasses.
- Versatility and tailoring by design.
- Easy to machine.
- Can combine other properties (damping, corrosion).
- Cost.

✓ Why are composites materials used?

#### Disadvantages

- Not often environmentally friendly.
- Low recyclability.
- Cost can fluctuate.
- Can be damaged.
- Anisotropic properties.
- Matrix degrades.
- Low reusability.

✓ Why are composites materials used?

Interesting mix of properties in which density is always a plus



Fig.1.1 Data for some engineering materials, in the form of a map of Young's modulus against density

✓ Why are composites materials used?

High versatility of shape and properties by design



✓ How are composites materials designed?

√ How are composites materials designed?

By comparing, and trying to combine the properties of the various engineered materials to meet the specifications of the usage planned for the composite.



## √ How are composites materials designed?

#### Properties of some matrices

| Table 2.5 | Selected | properties | for | different | types | of | matrix |
|-----------|----------|------------|-----|-----------|-------|----|--------|
|-----------|----------|------------|-----|-----------|-------|----|--------|

| Matrix                                                                  | Density $\rho \end{math} (\text{Mg m}^{-3})$ | Young's<br>modulus<br>E<br>(GPa) | Poisson's<br>ratio<br>ν | Tensile strength $\sigma_*$ (GPa) | Failure strain $\epsilon_*$ (%) | Thermal expansivity $\alpha$ $(10^{-6} \text{ K}^{-1})$ | Thermal conductivity  K  (W m <sup>-1</sup> K <sup>-1</sup> ) |
|-------------------------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------------|-----------------------------------|---------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Thermosets<br>epoxy resins<br>polyesters                                | 1.1–1.4<br>1.2–1.5                           | 3–6<br>2.0–4.5                   | 0.38-0.40<br>0.37-0.39  | 0.035-0.1<br>0.04-0.09            | 1–6<br>2                        | 60<br>100–200                                           | 0.1<br>0.2                                                    |
| Thermoplastics<br>Nylon 6.6<br>polypropylene<br>PEEK                    | 1.14<br>0.90<br>1.26–1.32                    | 1.4-2.8<br>1.0-1.4<br>3.6        | 0.3<br>0.3<br>0.3       | 0.06-0.07<br>0.02-0.04<br>0.17    | 40–80<br>300<br>50              | 90<br>110<br>47                                         | 0.2<br>0.2<br>0.2                                             |
| Metals Al Mg Ti                                                         | 2.70<br>1.80<br>4.5                          | 70<br>45<br>110                  | 0.33<br>0.35<br>0.36    | 0.2-0.6<br>0.1-0.3<br>0.3-1.0     | 6–20<br>3–10<br>4–12            | 24<br>27<br>9                                           | 130–230<br>100<br>6–22                                        |
| Ceramics<br>borosilicate glass<br>SiC<br>Al <sub>2</sub> O <sub>3</sub> | 2.3<br>3.4<br>3.8                            | 64<br>400<br>380                 | 0.21<br>0.20<br>0.25    | 0.10<br>0.4<br>0.5                | 0.2<br>0.1<br>0.1               | 3<br>4<br>8                                             | 12<br>50<br>30                                                |

#### √ How are composites materials designed?

Table 2.2 Fibre properties

| Fibre                   |    | Density  (Mg m <sup>-3</sup> ) | - 1 | Young's<br>modulus<br>E<br>(GPa) | Poisson's ratio | Ten<br>stren<br>(G) | ngth | Failure strain $\epsilon_*$ (%) | Thermal expansivity $(10^{-6} \text{ K}^{-1})$ | Thermal conductivity $ \begin{array}{c} K \\ (W m^{-1} K^{-1}) \end{array} $ |
|-------------------------|----|--------------------------------|-----|----------------------------------|-----------------|---------------------|------|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| SiC                     | n. | 3.0                            | 2   | 400                              | 0.20            | 2.                  | .4   | 0.6                             | 4.0                                            | 10                                                                           |
| monofilament            |    | 26                             |     | 100                              | 0.20            | 4                   | .0   | 1.0                             | 5.0                                            | 38                                                                           |
| Boron<br>monofilament   |    | 2.6                            |     | 400                              | 0.20            | 4.                  | .0   | 1.0                             | 5.0                                            | 36                                                                           |
| HM <sup>a</sup> carbon  |    | 1.95                           |     | axial 380                        | 0.20            | 2.                  | .4   | 0.6                             | axial $-0.7$                                   | axial 105                                                                    |
|                         |    | 2 0                            |     | radial 12                        |                 |                     |      |                                 | radial 10                                      |                                                                              |
| HS <sup>b</sup> carbon  |    | 1.75                           |     | axial 230                        | 0.20            | 3.                  | .4   | 1.1                             | axial $-0.4$                                   | axial 24                                                                     |
|                         |    |                                | 1   | radial 20                        |                 |                     |      |                                 | radial 10                                      |                                                                              |
| E-glass                 |    | 2.56                           |     | 76                               | 0.22            | 2.                  | .0   | 2.6                             | 4.9                                            | 13                                                                           |
| Nicalon <sup>TM</sup>   |    | 2.6                            |     | 190                              | 0.20            | 2.                  | .0   | 1.0                             | 6.5                                            | 10                                                                           |
| Kevlar <sup>TM</sup> 49 |    | 1.45                           |     | axial 130                        | 0.35            | 3.                  | .0   | 2.3                             | axial -6                                       | axial 0.04                                                                   |
|                         |    |                                |     | radial 10                        |                 |                     |      |                                 | radial 54                                      |                                                                              |
| FP <sup>TM</sup> fibre  |    | 3.9                            |     | 380                              | 0.26            | 2                   | .0   | 0.5                             | 8.5                                            | 8                                                                            |
| Saffil <sup>TM</sup>    |    | 3.4                            |     | 300                              | 0.26            | 2                   | .0   | 0.7                             | 7.0                                            | 5                                                                            |
| SiC whisker             |    | 3.2                            |     | 450                              | 0.17            | 5                   | .5   | 1.2                             | 4.0                                            | 100                                                                          |
| Cellulose (flax         | )  | 1.0                            |     | 80                               | 0.3             |                     | .0   | 3.0                             |                                                |                                                                              |

a High modulusb High strength